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Abstract. We study numerically and analytically the average length of reduced (primitive)
words in the so-called locally freeC(F, (d)) and braid B,) groups. We consider the situations
when the letters in the initial words are drawn either without or with correlations. In the
latter case, we show that the average length of the reduced word can be increased or lowered
depending on the type of correlation. The ideas developed are used for analytical computation
of the average number of peaks of the surface appearing in some specific ballistic growth model.

Introduction

This paper is devoted to the elaboration of a general method of analysis of stable probability
distributions in statistical systems of completely different physical nature, such as: vortices
in superconductors, entangled polymer bunches and open surfaces of growing media. Our
investigation is forced by realizing the following facts.

(@) The nematic-type ordering in bunches of entangled polymers as well as the
consideration of thermodynamic properties of uncrossible vortex lines immediately turn us
to studying the statistics of mutually entangled chain-like objects with braid-like topology.

(b) The ballistic-type growth of some amount of deposit in a box and the investigation
of the surface shape can be easily translated into the language of random walks over the
elements of some noncommutative group.

The development of mathematical methods implies the construction of the statistical
theory of random walks on noncommutative groups [1-10]; while the application of
elaborated methods in physics is aimed to answer the following question [11]: how does
the change in the topological state of the system affects its physical properties?

Although the general concepts of the noncommutative probability theory have been well
elaborated in the field-theoretic context, their application in the related areas of mathematics
and physics, such as, for instance, statistical physics of chain-like objects is highly limited.
This state of affairs can be accounted for by two facts: (a) there is a communication problem,
i.e. the languages used by specialists in topological field theory and probability theory are
completely different at first glance; (b) physical systems give no evidence how these ideas
are reflected in simple geometrical examples.

This paper is mainly concerned with the probabilistic methods which allow us to
solve the basic problems dealing with the limit distributions of random walks on some
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2768 J Desbois and S Nechaev

of the simplest noncommutative groups. To be more specific, we consider analytically and
numerically the limit behaviour of the Markov chains where the states are randomly taken
from some noncommutative discrete group. In particular, we restrict ourselves with the
so-calledbraid (B,.1) andlocally free (LF, 1) groups—see the definitions in section 1.2.
The preliminary results concerning the words’ statistics in locally free groups appeared in
recent works [4, 10].

The paper is organized as follows: in section 1 we introduce the necessary definitions;
sections 2 and 3 are devoted to the consideration of random walks on the locally free
and braid groups without and with correlations in the word writings; the application of
the concept of locally free groups to the problem of ballistic growth is considered in the
section 4.

1. Basic definitions

We begin with the investigation of the probabilistic properties of Markov chains on simplest
noncommutative groups. In the most general way the problem can be formulated as follows
(see also [4]).

Take a discrete grou@, ;1 constructed by the finite number of generatfys ..., g.}-
Any arbitrary sequence of generators we call ithidal word. Thelength N, of this word
is the total number of used generators (‘letters’), whereadehgth of the reduced (or
primitive) word, u, is the number of letters which remain after applying of all possible
group relations.

Later on we mainly use the rescaled variabls= N/n and ' = u/n instead of N
and . and consider the situation>>> 1 neglecting the ‘edge effects’.

In the following the most attention is paid to the computation of the mean length,
(' (N")), averaged over various distributions of initial words belonging to the gthup
(G,.41 is either a ‘locally free’ or braid group).

1.1. Random walks over group elements

Take the grou, 1. Let p be some distribution on the sgt, ..., g, gl_l, ..., g 1) For
convenience we cal; = g; for j =i andh; = g7 * for j = i +n. We construct the
(right-hand) random walk (the random word) Gp,; with a transition measurey, i.e. we
add, with the probabilityp, the element,,,, to the given wordWy = hg b, . . . he, from
the right-hand side

The random wordV formed byN letters taken with the probability distributignfrom
the set{gs, ..., g, gl_l, ..., g 1} is called theinitial word of the lengthN on the group

ng—l-
We distinguish below between the following three situations.

Drawing words without any correlations (‘standard case’)The probability distributionp
is uniform, i.e.p = 1/2n on the setig1, ..., g., &7 .-, & ).

Besides this standard case, we consider also two extreme situations of a words
construction, hereafter refered as ‘weak (strong) correlations’.

1 Analogously we can construct the left-hand side random walk on the dipup
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Drawing words with weak correlations (regime ‘A’).Suppose that in the initial wordVy,
we have for the last lette,, = g, or g,jl. Then we add the nextN + 1)th letterh
with the following probabilities:

ON+1

W gt with probability ¢ "
V1| any other letter with probability 4.

The normalization reads,

24 +2(n —py =1 2

Drawing words with strong correlations (regime ‘B’).Suppose again that in the initial
word, Wy, we have for the last letter,, = g or gk_l. Then we add the nextv + 1)th
letter with the following probabilities:

ON+1

®3)

_ & with the probabilityg s
“ 7| any other letter with the probabilitys.

The normalization in this case reads,

4gp +2(n —2)pp = 1. (4)

In particular, we show below that in the case ‘A’ the length of the reduced (primitive)
word decreases wheypy, is increased, while in the case ‘B’ the length of the reduced word
increases whepg is increased.

The absence of correlations, in both cases ‘A’ and ‘B’, means sefting= pap =
1/2n. Thus, in the limitr > 1, the ‘standard case’ is recovered, formally, by setting
qa.5 = 0 in the equations.

The investigation of such correlations is necessary in view of future physical applications
[11], especially when we are dealing with the polymers entanglements. Indeed, if we think
of G,+1 as of a braid group, the weak (‘A’) and strong (‘B’) correlation regimes will
correspond, respectively, to the weak and strong ‘entanglement regimes’.

1.2. Braid and ‘locally free’ groups

We aim to study the asymptotics of the limit distributions of Markov chains on the braid
group B,.1. For the case:r = 2 the problem has been solved in [4], where the limit
probability distribution as well as the conditional limit probability distribution of ‘Brownian
bridges’ on the groumBs has been derived. For > 2 this problem is as yet unsolved.
However, we can extract some reliable estimations for the limit behaviour of Markov chains
on B, ;1 considering the random walks on so-called ‘locally free groups’ [2, 4, 10].

Braid group. The braid groupB, 1 of n + 1 strings has generatorgos, oy, ..., 0,} with
the following relations:

0;0i410; = 0410011 A<i<n)

i
0i0j = 0;0; (li=jl=2 ®)

aiai_l =0t

; Op =e.
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e The word written in terms of ‘letters'—generators from the gat .. ., 0, al‘l, R
o, 1}—gives a particularbraid. ~Schematically, the generators and afl could be
represented as follows:

N -

1 2 = i i1 n n+1

1 2 = i i1 n n+1

e Diagramatically, the braid can be represented as a set of crossed strings going from
the top to the bottom after ‘gluing’ the braid generators.

e The closed braid appears after gluing the ‘upper’ and the ‘lower’ free ends of the
braid on the cylinder.

e Any braid corresponds to some knot or link. So, there is a strong possibility of using
the braid group representation for the construction of topological invariants of knots and
links, but the correspondence of braids and knots is not mutually single valued and each
knot or link can be represented by an infinite series of different braids.

Locally free group. The group LF,.1(d) is called locally free if the generators,
{o1, ..., 0,} obey the following commutation relations:

(a) each pail(g;, ox) generates the free subgroup of the gralip, 1 if |j — k| < d;

(b) oj01 = oro; for |j — k| > d.

We will be concerned mostly with the cage= 2 for which we defineLF, 1(2) =
LF,+1. The graphical representation of generatgrand a,.‘l is rather similar to that of

the braid group:
|
= 0'7;

‘_
1 2 e i i1 n n+1
—]
w .
| '

1 2 1 1+1 n n+1
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It is easy to understand that the following geometrical identity is valid:

L
1

1 t+1 1 141

hence, it is unnecessary to distinguish between ‘left’ and ‘right’ operators
It can be seen that the only difference between the braid and locally free groups consists
of elimination of the Yang—Baxter relations (first line in equation (5)).

2. Random walks without correlations on locally free and braid groups

It has been shown in papers [1, 6-8] that for the free group (i.e. for the group without any
commutation relations among generators) the problem of the limit distribution of Markov
chains can be mapped to the investigation of statistics of random walks on a simply
connected tree. In the case of locally free groups or braid groups the more complicated
structure does not allow us to use this simple geometrical image directly. Nevertheless, we
show in the following that simple ideas allow us to treat rigorously the locally free case.
Moreover, this approach will be especially useful when we study braid groups. Including
the braiding relations (5) in only a probabilistic way, we will obtain, for this latter case,
approximate results. Comparison with numerical simulations will show, however, that the
approximation is a rather good one.

2.1. The locally free grougF,+1(2)

Let us begin with the following example.

Example 1.Suppose that thé/-letter initial word leads to the following reduced word:
oy 102010405 107030g 103og 1

Now, if we randomly add a new letter from the right-hand side, it is easy to see that only
03, 05‘1 or 08‘1 can be reduced (for instance; cannot be reduced even if, by chance, we
adda{l because this generator cannot pass throtgfn Sl

Definition 1. The set of letters which we can reduce in the given primitive word by adding
one extra letter from the right-hand side we dhk set of reducible letterd.

The number of letters belonging fowe denote ag.

In the above examplé = {03, o5 1, 05 '} andn = 3. Generally speakingy = n/n is a
random variable, the probability distribution of whiehpriori depends both otV = N/n
andn.

It is worth mentioning the following basic properties of the #et

(i) if o belongs tol theno™* does not belong td;

(ii) if o7 belongs tol thenot}, o7}, 075; andoT} do not belong to, i.e. all the
elements of must commute
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On the basis of (i) and (ii) we can easily deduce that § < n/2 (n = O corresponds
to a completely reduced word, i.g.= 0).

The set/ allows the following very useful geometrical interpretation. Také&oxes
(labelled ast = 1, ..., n) as displayed below:

‘ 1 1 1 1 1 1 1 1 1 PP 1

k 1 2 3 n

The boxk is empty except ibkﬂ belongs tol. In the given example only boxes 3, 5, 8
are occupied. From the properties (i) and (ii) of the Eete deduce that two neighbouring
boxes cannot be occupied.

Generally,l is described by occupied boxes separated by a sequendeé bfl) empty
boxes. Letn; be the number of such sequences of lengthiNeglecting the edge effects
(i.e. forn > 1), we obtain the following rules:

Zni =7 (6)

i1

Zi n;=n-—n. (7)
i1
Consider now the evolution of the reduced word (lengjhand of the sef (lengthn)
when we randomly add a letter from the right-hand site-> N +1 (i.e. N’ — N'+1/n).
(Apparently the evolution of the reduced word and the/sate correlated.) Two possibilities
can occur:

and

1 .
Ap' =+-= for the ‘increase’ processu(— u + 1)
n

1
Ap =—= for the ‘decrease’ process.(— u — 1)
n

where Ap/ stands for the increment’' (N’ + 1/n) — u/'(N').
We consider the ‘increase’ and ‘decrease’ processes separately.

The ‘increase’ process.

| o
1

I

It is easy to see that the added letter will necessarily belong to the nelv s&twever, it
does not mean that, in this case, ewetomaticallyhaven’ — n’ + 1/n. Actually, n" can
stay unchanged or changed til/n.

The latter point becomes clearer if we come back to example 1 wliere
{03,051, a5 !}. We have the following choices:

e if we addos (or 05‘1 or 08‘1), then the sef (and, hencey’) remains to be unchanged,;

e if we add og, thenyn’ is still unchanged:I becomes the new séts, g, 08‘1}, the
letter o has replaced; 1in the setl. The same occurs faoy’ if, instead ofcs, we add
o5t or o3, and so on..;
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o if we add o4, then becomes the new sgta, oy h (04 erasesrs; and o, ~1 from 1)
and, consequentlyy’ — " — 1/n (same change occurs fof if we addo, b;

e if we add oy, then becomes(os, o5 %, 05 *, 010} andn’ — ' + 1/n (the same is
happened if we add;* or o3, and so on..).

These considerations can be generalized and careful inspection leads to the following
rules for the increasing proces& ¥’ = +1/n, Au' = +1/n):

An' =0 occurs with probabilityllg = % <77 + 42;22 ni)
1 . -
An =—= occurs with probabilityll_ = 2 2n; (8)
n
1
An =4= occurs with probabilitylT, = 223 ._sn;:(i — 2).
s >

With the help of equations (8) we obtain as expected, for the total probahility of
the increasing process,

H1=H0+H_+H+=1—%. 9)

From the inequality 0< n’ < 3 derived above it immediately follows thgt < Iy < 1.
For the corresponding average changey'ofve have,

(A1)
— = + ni(i—2) = ni(i —2) =
AN ) )
so, we arrive at the following equation
(A1) = (1= 3(n") AN’ (10)

where(- - -) represents an average over the set of all initial words witHixed.

The ‘decrease’ process.Now we compute the changé,n’) for the reducing process, i.e.
whenN’ — N’ 4+ 1/n andu’ — w' — 1/n. It occurs with the probability
n/
[y=1-11; = 5
In this operation, a letter of the sétis erased and, again, we have;’ = 0 or +1/n.
Recall that all the elements @¢f commute. So, the erased letter (hegg can always been
considered as the last one:

|

I

From this point of view, the decrease procéds— N + 1, u — u — 1) is rigorously
the inverse of the increase on® — 1 — N, u — 1 — u). Thus, weighting each process
with its actual probability, we obtain the equation,

I
(Aan') = <A1n H—j> (11)

where corrections of order/& are neglected.
Collecting the ‘increase’ and ‘decrease’ processes together, we obtain,

(An/> _ ’ I
v ={emen (=)
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and
(Ap')y
N
We arrive in the limitN > 1; u > 1 at the following differential equations:
d(n’) n A=7)
— =({1-37)——F 12
dN’ <( a2 (12)
and
din) /
aN’ 1-(n). (13)

It should be stressed that equation (13) together with the inequglity % imply that
(w)/N = %

We can discard the brackets in equations (12) and (13) whenl. To show that, let
us compute the probability distribution @f, P(N’, n"). The functionP(N’, ') satisfies
the following recursion relation,

P(N'+1/n,n) = PoP(N',n) + PLP(N', 0 = 1/n) + P P(N', ' + 1/n) (14)
PO, n) =38("
where
Po=To (14 22 PL=TL 4T 22 py— 411,22
o = Ilo I, 1= 11y o 2= 1l T
are transition rates. Expanding equation (14) to the lowest ordefsinnke obtain
aP P 1 2P 1
— =(P,—P — P14+ P)— +0( - ). 15
N (P2 1)8n’+2n( 1+ 2)377'2+ (n) (15)

When n — o0, the diffusion term becomes negligible and the equation becomes
deterministic. Then, the distribution functiah acquires zeros width, henggis peaked at
its average value. The same would be true/f6but not for variables; and i (for which
a nonvanishing width is expected).

From now on, as far as only’ and u’ are concerned, we systematically omit the
brackets. Solving equation (12) we get

1-» AN’

dT—3n)5s  © 4o

Using equation (13), we obtaijn’ as a function ofN’.

The comparison with the numerical simulations is displayed in the upper part of figure 1
(the full curve: equations (13), (16); the points: simulations witk 100).

We observe at smalV’ that (1) >~ N, i.e. practically no reduction occurs because the
words are too short compared with the set of available letters and we have only a small
chance to draw, in the same word, a given generator and its inverse. On the other hand,
taking the limit N’ > 1 in equations (13)—(16) we arrive at [10] :

, 1 () 2

n 3 and N 3 a7)
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no correlations

1,0 )
® - numerical results for the group LF
4 - numerical results for the group B,
0,9 - analytic computations ( for LF and B,)

<u>/N

0,5

0,4 . 1
0

N/n

Figure 1. The normalized lengthu)/N, of the reduced word as a function of the length of the
initial word, N /n, for locally free and braid groups. Words are drawn without any correlations.

2.2. The locally free grougF,+1(d) ford > 2

The ideas developed above can be extended to the general case—th& grouyd) with
d > 2. It is worth mentioning the following simple fact. The generaiprerases alb;’s
with j =k—Wd-21,....,.k—Lk+1...,k+ (d -1 from the set/. In other words,
oy ‘screens’ all the generators in a zone of extensi@h-21) around itself. This point of
view is especially useful when we treat the correlations (‘B’).

In the case of the grougF, 1(d) equations (8) become:

An'=0 oceurs withllp = % + Y244 4uod=t) 4 s oy 2uld=D)
Ay = +% occurs WithIT, = Y75, 4, 24242 (18)
Ay = —% occurs with[l_ = Y24 2u@d=1-)
while equation (13) remains unchanged.
The solution of equation (12) now reads
1-n — Md=DN’ (19)

4d

(1—(2d — D)2

w
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(cf equation (16)). Asymptotically we obtain:
1 (n) 2d-2
d — = .
201 " N T 2d-1
It is easy to check that equation (17) is recovereddfes 2 (see also [10]).

n = (20)

2.3. The braid groupB, ;1

Comparing the groups,.1 and LF,.1(2) we can see thay’ in equation (13) has to be
replaced by some” (> #n’) in order to take into account the additional braiding relations
equation (5).

For eacho; belonging to/, we can obtain additionnal reduction if and only if we can
build at the end of the reduced word a sequence of lettersslie, 10x. Then the braiding
relation equation (5) implies thaf..1 becomes reducible.

Let us compute the probabilitg of finding such a sequence. Suppose that generators
o andoy1 emerge elsewhere in the reduced word. We have to push them to the right until
they meet the generatoy, already belonging to the sét—see the figure below

— m m

Ok Ok+1 Ok

1 L L L e 1 1 L L ...J‘_I_... L L
A B c

reduced word

We proceed in two subsequent steps.

(1) We push the generatey, located at point until it meets the generatet,; located
at point B. The local transition probability of such processpis where
_2n—6
S 21
It easy to understand that; is the probability to commute a given generator inside the
reduced word with its right neighbour.

(2) Completing the first process we push the pair,,, until it meets the generater,
located at the poin€. The local transition probability of such a process s p,), where
_2n=2
S 21
p2 is the conditional probability to commutg under the conditionthato;; commutes as
well.

We arrive finally at the equation fa@ (u'):

1 2 sm4m'<p )
Q(M/)=<E> ( > pT(plpz)"’). (23)

m,m'=0

P1 (21)

P2 (22)

The answer forQ(u') in the limit n > 1 reads:
o) = & — ter ' ¢ Lew¥, (24)
Moreover, for giveno, € I, not only can the sequence,o;.i10r be used for
braiding relations but also 5 other sequences (namglye10x, o, ox_10%, oy *o, 4 0%,

-1 _-1
0, "0, _10%)-
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Thus, in equation (13);" has to be replaced by,

n"(w) =n"(n)(1+6Qw)) (25)
while equation (16) remains unchanged. The results are shown in the lowest part of figure 1
(the points are the numerical simulations ®y,1, » = 100; the full curve corresponds to
equations (25), (16)).
At the end of this section let us mention two important facts.
e For smallN’ (typically, for N’ < 1 i.e. N < n), we obtain

e
N LFn41 N By

i.e. the ‘braiding’ plays practically no role because the words are too short to produce
sequences such agoy10%.
e In the asymptotic regim&/’ — oo andu’ — oo we obtain

’ 1 7 (m)
=3 n" =04 v =06 (27)
We can now appreciate the impact of the braiding relations. The reductions are increased
by about 20% (from% to 0.4)—see equation (27) and, simultaneoughy),/N is decreased
by about 10%. So, in that regime, the groups, 1 and B, 1 do not coincide (even though
they give the same order of magnitude for the quaniity/ N). This is consistent with our
conjecture expressed in [10] where we introduced the concept of the locally free group with
‘errors’ in commutation relations{ ;. Recall that in [10] the coincidence between the
limit behaviour of the irreducible words iﬁ]—"ﬂl and B,;1 has been reached if we allow

20% of errors in commutation relations.

3. Random walks with correlations on locally free and braid groups

We come back to the locally free groufy%,.1(2) and suppose, now, that the letters are
drawn according to the rules described in the section 1.1. Because of the correlations inside
of the words, a ‘step by step’ treatment as in the standard case is practically untractable.
However, rescaling arguments allow us to obtain reliable approximate solutions.

The weak correlations (the case ‘A’) The effect of correlations ‘A’ amounts to a change
of equations (12)—(13) into,

dn’ W B—oan

dnN’ ( n)l—i—,B—om/ (28)
and

du’

= —B—ar 2

Y B —an (29)
where

a=1-—2g, B = l%. (30)

Let us explain where these equations come from.
Using the same line of thought as in section 2.1 and taking into account the normalization
condition (2), we obtain

dn’ , I,
G = a-ana-2 (1- 7). @)
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and

/

du
dn’
However, the probabilities[1; and I, corresponding to the ‘increase’ and ‘decrease’
processesI{; + T, = 1) must be computed again to take into account the correlations.
This is done as follows.
(1) The case ‘A’ means that we mainly take care of the situation when the next added
letter is the same (with the probability,) as the previous added one.
Suppose that, at some time, we draw the latierAt the next time-step we can adg
or ak‘l with the probability ¢4. Continuing such a process we develop a one-dimensional
(1D) ‘random walk’

=1 — I,. (32)

A . -1 -1_-1
Wip : {oxo, “ororo, “op ~ ...}

with a mean ‘lifetime’t4 = 14 2g4 + (2g4)?> + ... = 1/(1 — 2q4). This implies the
rescaling of the ‘time’:

N — (1— 2qA)N,

as can be seen in equation (31).

(2) Another contribution to equations (31) and (32) is connected to the ‘mean length’,
(), of the random chair‘Wf‘D discussed above. To clarify what) is let us consider the
following example:

Number of steps 1D chain The length Probability
1 Ok 1 (1—2g4)

2 oot 0 ga(1—2q,)
2 OkOk 2 qa(l—2q4)
3 oo tor = oy 1 q3(1—2q4)
3 Okakflokfl = 0,:1 1 q%(l —2q4)
3 0010} = O} 3 q5(1—2q,)
3 O'k()'kO'k_l = O 1

q3(1—2q94)

The calculation ofi/) for given g4, and an infinitely long random chaiw}}, leads to
the equation

(1) = agh(1—2q4)
k=0

whereaq; obeys the recursion relations
Agk1 = 2az;
ay — 26l2k,1 = C]2<k

The final answer fok!) is,

o 1
() =) Chai = —— (33)
k=0

V1444

1 We drawoy with probability g4 anda,:l with probability g4 independent of each other.
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() is produced during the ‘lifetimet,. Thus, equation (13) should be rewritten as
1 dw
={)—7. 34
127, dv (1) = (34)
This equation enables us to extract the expressionBl fqiand, hence, fofl, = 1—IT;)—
see equation (32) and substitute these values in equation (31). Now equations (28) and (29)
follow directly from equations (31) and (32).
Let us stress that naive ‘time rescaling’ in equation (13), i.e. the equation
1 dy
1—2g4 dN’
(i.e. when(l) = 1) leads to a wrong result.
The comparison with numerical simulations is shown in figure 2. For the gByup—
the lower part of the figure 2—we used the same recipe as in section 2.3 to obtain the
analytic results (dotted curve). In the limlit' — oo our computations give the answer (for
the groupLF,,11):

/

1 l—ZqA 1
oo = 3 N ’w 1729, 30 40 (35)

correlations "A" (q,=0.1)

1,0 g
® - numerical results for the group LF,

A - numerical results for the group B,

0,9

- analytic computations for the group LF

~~~~~~~~ - analytic computations for the group B,

<pu>/N

2 4 6 8 10
N/n

0,4
0

Figure 2. The same as figure 1 except that words are drawn with correlations;A=(0.1).
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The value% is a monotonically decreasing function @f wheng, increases from 0

o0
(% = §> till its maximal value 3 (% = 0). Clearly, the correlations ‘A’ enhance the

reductions.
Let us pay attention to the fact that

() 1-—2g4 :
WA/’_—>>O,1+2¢]A<1 if ga #0 (36)

where N’ — 0 means that > N > 1. This fact is clearly depicted in figure 3. One can
see that the agreement between equation (36) (full curve) and numerical simulations for the
groupsLF,+1 and B,11 (points) is perfect.

correlations "A" in the limit 0<N/n<<1

1,0 ®m  numerical results for the
groups LF_ and B,
—— gnalytic computations

0,8 -
06 ]

<€

A

3.

v
0,4} 4
0,2+ .
0,0 i 1 " 1 n 1 i i M

0,0 0,1 0,2 0,3 0,4 0,5

da

Figure 3. The limit of (x)/N when O< N/n « 1 is plotted as a function of the probability
qa, for locally free and braid groups. Words are drawn with correlations ‘A’.

The strong correlations (the case ‘B’).The correlations ‘B’ are dealing with the situation
when the next added letter to the initial Wordajgll (with the probabilitygg) if the previous
added one is;*—see section 1.1 for the definition and the normalization of probabilities.
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correlations "B" ( qz=0.05)

1,0 4
® - numerical results for the group LF
0.9 A - numerical results for the group B
’ - analytic computations for the group LF_
0,8} ]
< a
3 o7r A -
A A L4 4 .
0,6F ]
05 J
0,4 n i i i A i L i n i
0 2 4 6 8 10
N/n

Figure 4. The same as figure 1 except that words are drawn with correlationg ;8=(0.05).
(Analytic computations for the group, are absent.)

In the spirit of discussion of the case ‘A’ we can describe our process of successive
letter drawing as a development of the 1D Markov chain

B . -1 _-1 -1
WlD . {Uk0k+10k 04, _10k—20; _30k—2 .. }

The corresponding ‘lifetime’rg, is t5 = m.
The chainW, can be viewed as a 1D random walk in the ‘label space’

k—->Gk+)—>k—->k-1D—>k—-2—> *k—-3)—>(k—2)...

with an extension around of order of 2,/75 = T _ | _

Now, if we apply the evolution mechanism of the getwe immediately realize that all
the generators in a zone of extensi%ﬁﬁ are erased. (In our examplej 1 erasessy;,
o ! erasess 1, o, 4 eraseswr; b, ....)

Comparing with the groupCF,1(d) and following the remark at the beginning of
section 2.2, we can define the new effective- degt by the equation,

2def — 1) = N (37)
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Figure 5. The plot shows the dependenpgN’) for locally free and braid groups for both
kinds of correlations (‘A’ and ‘B’). The corresponding analytic results are available in all cases
except for the braid group when words are drawn with correlations ‘B’.

Moreover, it is easy to see that the probability (reduction process) is equal to

1—4613) ’
2 )"

My = pgn =nppn' = ( (38)
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We have used the normalization (4) and supposedribatl.
So, we obtain:
du’

— =01 -, =1-2l, =1-(1— ‘. 39
N’ 1— 1 2 (1—4qp)n (39)

For the evolution ofy’, we obtain, after time rescaliny’ — (1 — 4¢gp)N’, the equation

/

dn
dn’

I
= (1 — 1/ (e — 1) (1 — 4q5) (1 - H—j) (40)

that is easily solved. In the limiv’ — oo we arrive at the following equations

, 1 1 (41)
noo_zdeff—l_ 1_24484-1

and
()| 2+45v/T— 45

N L_ 24+ J1—=4q5

(42)

We can see thats!

is a monotonically increasing function gf; from % (for gg = 0)

until 1 (for the maximal valueyz = 3).

The correlations in the case ‘B’ increase the length of reduced words in the case of
the locally free groupCF,1. The same behaviour is seen numerically for the braid group
By11.

In figure 4 we compare the results of numerical simulations for the gristip, 1(2) at
gg = 0.05 (dots) with our analytic computations (full curve—solutions of equations (39)—
(40)).

Our numerical computations of the normalized reduced word length,, as a function
of normalized initial word lengthN /n, are summarized in figure 5. This plot shows the
dependence(N’) for locally free and braid groups for both kinds of correlations (‘A’ and
‘B’). The corresponding analytic results are available in all cases except for the braid group
when words are drawn with correlations ‘B’.

4. A ballistic growth model

We apply the ideas developed above to the investigation of some statistical properties of a
ballistic growth process in + 1 dimensions.

The standard ballistic deposition can be defined in the following way [12]. Take
columns, of unit width each. A particle, of unit width and height, is dropped vertically in
a randomly chosen column and sticks, upon first contact, to the evolving deposit.

Let h(k, N) be the height of the column with the numbiefk € 1, ..., n) after dropping
N particles. The surface of the pile is determined by the funckiGn N). The change of
h(k, N) when one extra particle is dropped in colurmsatisfies the following rule:

h(k, N4+ 1) =maxh(k —1, N),h(k, N)+ 1, h(k + 1, N)}. (43)
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Schematically this rule corresponds to the following process

new added box

_____

k 1 2 3 k 1 2 3.

The ‘active’ box sides (i.e. the sides which can attract the new particles) are shown in
boldface.
Let us slightly modify rule (43) and suppose that,

h(k, N +1) =maxh(k —1,N), h(k,N), h(k+1, N)}+ 1 (44)
The prescription (44) corresponds to the situation shown below;

new added box

______

Ok+41 Ok

Ok Ok+1

It represents the ballistic growth of the pile of unpenetrable particles still of unit height but
of width slightly larger than one: two particles dropped in neighbouring columns cannot
‘pass through’ each other.
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In the course of numeric computations we obtain for the average height of the pile,
h(N"), the asymptotic value
h(N')
N/
for N’ = N/n > 1; while for the standard ballistic model one has

~ 4.05

Thus, the compactness of the pile in our model is about twice smaller.

The collection of peaks and valleys in our model forms a highly rough surface, which
develops in the course of particles dropping. We suppose that each ‘time-step’ corresponds
to adding one extra particle to the system. Recall thas a peak at some timé&/ if
h(k, N) > maXh(k — 1, N),h(k + 1, N)}. In what follows we are mainly interested
in computing the average number of peaksN). As before, we defing/ = n/n and
N = N/n.

According to rule (44), two peaks cannot appear in neighbouring columns and we
can easily establish the connection with the ideas developed above: a particle dropped
in the columnk can be viewed as a lettef, drawn with the probability An over the set
{o1, ..., 0,} generating the groupF,+1(2). The ‘hardcore’ constraint implies the condition
o;0; = o;0; if and only if i # j & 1. Note that we deal in this case with the ‘semigroup’
LF ., because we do not use the inverse generatofsand do not consider the reducing
process. From this point of view, our analysis, though analogous, is simpler than for the
whole groupLF, +1.

Thus, we can easily deduce thie set of peaks is analogous to the set of reducible
lettersI and is reminiscent of the enumeration of ‘partially commutative monoids’ known
in combinatorics [13].

Suppose that two neighbouring peaks are separated by the horizontal interval of length
i > 1 andn; is the number of such intervals. Now we are in a position to write the recursion
relations for the proces§’ — N’ + 1/n:

n—n occurs with probabilitylTy = %(77 + 221_22 ni)
1 - oy
n—n—-- occurs with probabilityll” = % (45)
n
1 - aye
n—n+= occurs with probabilitylT’, = %(Z»a”i (i — 2))
n >

where the conservation condition implies that
Mo+ 4+ 11, = 1.
The sum rules (6) and (7) remain unchanged. Comparing equations (45) with equations (8)
we find that onlyIT; differs from ITo.
In terms ofy” and N’, we obtain the simple ordinary differential equation for the mean
value

dn’
— =1-37. 46
av’ n (46)

The solution of equation (46) reads
N =31-e3"). (47)
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So, asymptotically ¥/ — oo), we find that% of the columns are peaks.

Let us extend our consideration to the case of unpenetrable particles of widths slightly
larger than(d — 1) x (unit particle width). It means that now the ‘*hardcore’ condition forces
us to consider the generators with the following commutation relationg: = o;0; if and
only if |i — j| > d (whered > 2). This situation is shown schematically below:

Ok+d—1

Ok+42

Ok

It is a simple matter to see how equations (45)—(47) are changed. We quote the final

result only:
;o 1 —(2d—1)N’
n = 2d—1(1 € ). (48)

The caseal = 2 corresponds to equation (47).

As has been done for the locally free grodf,.1(2), we are looking at the changes
in n" (equation (47)) when we allow the correlations between the subsequently dropped
particles (see the section 3 for details).

The weak correlations (the case ‘A’)If we draw o, at some moment in timay, then at
the next moment in timg,N + 1), we have the following situation:

the generatos; appears with the probability,
any generatos; (I # k) appears with the probability 4.
Due to the absence of inverse generators, the normalization now reads:
ga+m—1ps=1 (49)

(cf equation (2)).
The recursion rules for the proceds — N’ + 1/n are now,

Ay’ =0 occurs with probabilityTy = g4 + (1 — D)pa +2),.,1i pa
;1 . .
Anp' = —— occurs with probabilityll” = nj pa (50)
n
1
Ay =+= occurs with probabilityll’, = 3", ,n; (i —2) pa.
n >
So, we find
dn’
—=(1- 1-3y 51
i’ (1 —ga) n) (51)
and
n = 31— e 3y, (52)

Asymptotically, again% of the columns are peaks and here the effect of correlations
leads only to the time rescaling’ — (1 — g4)N'.
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The strong correlations (the case ‘B’).If we draw g, at some moment in timey, then at
the next moment in time(N 4 1), we have the situation,

the generatos;.+1 appears with the probability
any generatos; (I # k + 1) appears with the probability.

The normalization is,
2qp+(n—2)pp =1 (53)

As has been shown already in section 3 the effect of such a correlation leads to the
replacement ofl = 2 by some effectivels. According to equation (53), we obtain:

1
dett = ——==+ 1. (54)
T VI-2s
In addition, the time must be rescaled &5 — (1 — 2g3)N’. Finally we arrive at the
following linear differential equation

/

dn
dn’

= (1 —295)(1 — (2ders — D)) (55)

ballistic aggregation with correlations "A"

0,4 v T T T . T r T - r

® - numerical results for q,=0.2
- analytic computations for g, =0.2

n/n

A - numerical results for q,=0.5

----- - analytic computations for q,=0.5

N/n

Figure 6. Dependence of normalized amount of the surface peakspn the normalized
number of ‘pile volume’,N’, in the ballistic aggregation model. Particles are dropped with
correlations ‘A’.
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ballistic aggregation with correlations "B"

® - numerical results for qg=0.1
- analytic computations for qz=0.1

n/n

A - numerical results for gg=0.2
————— - analytic computations for qz=0.2

0,0- M 1 A i i 1
0

N/n

Figure 7. Dependence of normalized amount of the surface peakspn the normalized
number of ‘pile volume',N’, in the ballistic aggregation model. Particles are dropped with
correlations ‘B’.

which has the solution

i b e @hrba-2n
"= g 7(1-€ ). (56)

It is worth noting that, in addition to the time rescaling, the correlations ‘B’ also lead
to a change of the asymptotic value 1gf

Comparison of equations (52)—(56) with numerical simulatians-(L000) shows quite
good agreement—see figure 6 for correlations of type ‘A &)= 0.2, (b) g4 = 0.5 and
figure 7 for correlations of type ‘B”: (ayz = 0.1, (b) gz = 0.2.

5. Conclusion

The investigation of statistical properties of random walks on braid and locally free groups
was undertaken due to the following reasons.

(1) On the basis of performed investigation we constructed the simple mean-field Flory-
type theory of interacting braided random walks (bunches of ‘directed polymers')id 1
dimensions.
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(2) The length of the reduced word can be served as a well-defined characteristic of the
‘complexity’ of knots constructed on the basis of braids. Thus, our study could be regarded
as a basis for investigation of the limit behaviour of knot and link topological invariants
when the length of the corresponding braid tends to infinity, i.e. when the braid ‘grows’.

(3) We believe that the application of the locally free group in the theory of ballistic
aggregation could be used: (i) in the consideration of statistical and relaxational properties
of ‘sandpile models’ exhibiting SOC-behaviour (self-organized criticality); (ii) in the
microscopic description of the surface growth phenomena.
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